A Software-Defined GPS and Galileo Receiver: Single-Frequency Approach

15-Sept-2005
ION-GNSS-2005
Session C4: GNSS Software Receiver Systems 2

K. Borre; Aalborg University
D. Akos; University of Colorado
Presentation Overview

- Motivation
- Software GNSS Receiver Architectures
- Front End Design & Signal Conditioning
 - Sample GPS Data Set
- Signal Acquisition
- Code & Carrier Tracking
- Navigation Data Decoding & Position Solution
- Future Work
Motivation

- Develop a software GNSS receiver to process both GPS and Galileo narrowband L1 components
- Develop accompanying textbook for teaching/educational aspects of GNSS software receivers
- Provide an open source (GPL) fully functional GNSS software receiver basis for further development and refinement by the research community
Traditional GNSS Receiver Architecture

- A generic GNSS receiver block diagram is depicted below:

- The core GNSS receiver components are:
 - Antenna
 - Front end for analog signal conditioning, filtering, and digitization
 - High speed correlation ASIC (application specific integrated circuit)
 - Embedded programmable micro/signal processor

- Hardware (ASIC-based) receivers provide minimal flexibility and little support for GNSS additions and/or research
GNSS Software Receiver Architecture

- The modification to a “software” GNSS receiver architecture is subtle

- Now all the signal processing (spread spectrum) after the analog-to-digital converter (ADC) is accomplished within a programmable processor.
- Above front end design provided a raw digitized sampled signal for algorithm development & processing

- Data set is included with the software algorithms
Collected Data Set

- Collected data set is multiple minutes of data
- Algorithms have been tested with other front ends (sampling and intermediate frequencies)
- Software GNSS RX architecture utilizes traditional processing of the data
 - Acquisition, Code & Carrier Tracking, Navigation Data Decoding & Position Solution
Start with an overview of the complete software GNSS RX architecture.
GNSS Signal Acquisition - Parallel Code Phase Search

Frequency-domain circular convolution technique

- Algorithm tests all possible code phases via an FFT/IFFT computation
 - FFT/IFFT computation time is the key to the algorithm
- Provides an exhaustive testing of all possible code phases
- Potential for very rapid acquisition times
Flow Diagram of Software GPS RX Acquisition

- Perform acquisition on sample collected data set
- Need to know the sampling frequency and resulting intermediate frequency (IF) to enable processing
- Result should return visible satellites, their code phase and carrier frequency estimate
Complete Tracking Block

- Combined code and carrier tracking loops
Flow Diagram of
Software GPS RX Tracking

1. **Tracking.m**
 - Preallocate arrays and define data record to be processed

2. **Read in next ms of data**
 - Generate early, late, and prompt local code replicas
 - Generate local sine and cosine carriers
 - Mix signal to baseband
 - Correlate with local C/A code replicas to find I and Q values (P, E, L)
 - Compute code and phase discriminators

3. **PLL**
 - Have 30 ms been processed?
 - Yes: Compute change in frequency using tracking mode PLL coefficients
 - No: Update frequency of local carrier wave
 - Compute change in frequency using pull-in mode PLL coefficients

4. **DLL**
 - Has a multiple of 20 ms been processed?
 - Yes:
 - Average the code discriminator over 20 ms
 - Shift the replica code forward or back samples
 - Compute sample number and store all tracking results
 - No: Does the result exceed limits?
 - Yes: Return
 - No: Have all acquired signals been processed?
 - Yes: Return
 - No: Have all ms been processed?
 - Yes: Return
 - No: Have all ms been processed?
 - Yes: Return
 - No: Have all ms been processed?
 - Yes: Return
 - No: Have all ms been processed?
 - Yes: Return
 - No: Have all ms been processed?
 - Yes: Return
 - No: Have all ms been processed?
 - Yes: Return
 - No: Have all ms been processed?
 - Yes: Return
 - No: Have all ms been processed?
 - Yes: Return
 - No: Have all ms been processed?
 - Yes: Return
 - No: Have all ms been processed?
 - Yes: Return
 - No: Have all ms been processed?
 - Yes: Return
 - No: Have all ms been processed?
 - Yes: Return
 - No: Have all ms been processed?
 - Yes: Return
 - No: Have all ms been processed?
 - Yes: Return
 - No: Have all ms been processed?
 - Yes: Return
 - No: Have all ms been processed?
 - Yes: Return
 - No: Have all ms been processed?
 - Yes: Return
 - No: Have all ms been processed?
 - Yes: Return
 - No: Have all ms been processed?
 - Yes: Return
 - No: Have all ms been processed?
 - Yes: Return
 - No: Have all ms been processed?
 - Yes: Return
 - No: Have all ms been processed?
 - Yes: Return
 - No: Have all ms been processed?
 - Yes: Return
 - No: Have all ms been processed?
 - Yes: Return
 - No: Have all ms been processed?
 - Yes: Return
 - No: Have all ms been processed?
 - Yes: Return
 - No: Have all ms been processed?
 - Yes: Return
 - No: Have all ms been processed?
 - Yes: Return
 - No: Have all ms been processed?
 - Yes: Return
 - No: Have all ms been processed?
 - Yes: Return
 - No: Have all ms been processed?
```
Navigation Data Decoding

- The final signal processing function of the receiver is to decode the 50 Hz navigation data stream.

- The bits are clearly visible in the inphase channel of the Costas loop.

- Processing proceeds as follows:
  - Bit synch - determine the start/stop of each bit
  - Frame synch - determine the start/stop of the navigation data frames
  - Data decode - extract the necessary parameters from the transmitted '1's and '0's in the first three subframes (required for position solution)

- The ICD-200 and GPS signal specification are outstanding references and describe in detail the structure of the navigation data message.
Calculating Pseudoranges

- Timestamp the start of each subframe
Pseudoranges

Flow Diagram

- **calculatePseudoranges.m**
  - **first position solution?**
    - yes
      - define preamble and preallocate arrays
      - correlate nav bits with the preamble
      - find location of the first preamble
    - no
      - update TOW by time increment
      - update 1st subframe by time increment
      - compute travel time (absolute sample #)/ (sampling frequency)
  - no
    - compute smallest travel time
    - truncate remaining travel times in relation to the smallest travel time
    - compute pseudoranges (travel time * speed of light)

- **all channels processed?**
  - yes
    - return
  - no
    - find next preamble location
    - preamble located 300 & 600 bits later?
      - yes
        - TOW and HOW pass parity?
          - yes
            - return
          - no
            - no
              - no
                - return
              - yes
                - all channels processed?
Position Solution
Flow Diagram

- `postNavigation.m`
- Calculate pseudoranges
- Find satellite position and clock offsets
- Least squares filter (az, el, DOP, X, Y, Z, dt)
- Store results
- End
Receiver Position Computation

Position solutions generated at 1 Hz rate for 38.192 MHz data set
Shown are the results for the first 30 second block of data
Receiver/Code Comments

- Post-processing MATLAB version
  - Focus is on algorithm research and development
  - Provide non-real time processing yet not excessively slow
    - Computation speed approximately 6-12 times real-time (sampling frequency dependent)
  - ~500 lines of code

- Goal is to augment the knowledge concerning signals and algorithms
Summary & Conclusions

- Book will be available early 2006
  - Should provide basis for software GNSS receiver courses

- Current receiver developments
  - Support for Galileo signals
  - Support for EGNOS signals

- Will make available a reference textbook & complete GPS/Galileo GPL Matlab framework to be used for algorithm development and testing